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1. Global Ocean Data Assimilation System  

Ocean data assimilation is a mathematically rigorous process, which combines the 

ocean observations and ocean models to take out the important information of the 

ocean circulation and associated thermocline fields. We know that the ocean 

observations are sparse and incomplete over the time. The main purposes of ocean 

assimilation are suitably combine model and observation to monitor the ocean 

circulation, and predict the ocean circulation at different spatial and temporal scales. 

The data assimilation approaches vary significantly in term of the assimilation method, 

observations assimilated, and also in term of forecast error covariance, model biases, 

observation errors and the quality control procedure for different types of observation. 

Various ocean data assimilation products were developed during the Global Ocean 

Data Assimilation Experiment (GODAE, Bell et al., 2009). In these data assimilation 

products, both model and observation are assumed as erroneous. The models have 

errors due to deficiencies in the model physics, grid resolution, lateral boundary 

conditions, and atmospheric forcing while the observations have error due to instrument 

or representative error. One important impact of the data assimilation is to counter the 

tendency of ocean models to drift away from reality. A large number of methods for 

combining model and observational data are described in the literature. These methods 

are classified in three classes: Variational methods such as 3DVar or 4DVar (Lorenc, 

1986) based on the minimization of a coast function that measures the differences 

between the model and the observations, the various levels of approximation to the 

extended Kalman filter also called as sequential schemes (Daley, 1991), and ensemble-

based schemes such as ensemble Kalman filter (Evensen, 1994). Each of these 



approaches has its own advantages and disadvantages with respect to the 

approximations made, complexity and computational cost. 

The fundamental equation of variational data assimilation is based on an 

incremental cost function. 
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Where, the increment  𝛿𝑥 = 𝑥 −  𝑥௕ is the difference between the state vector  𝑥  and its 

background estimate  𝑥௕ ,  𝑑 = 𝑦 − 𝐻(𝑥௜) is the innovation vector. Y is the observation 

vector and  𝑥௜ =  𝑀௧೚→௧೔
  (𝑥௕).  the notation 𝑀௧೚→௧೔

 indicates the nonlinear propagation of 

model from the background state to the state at ith time. B and R are the model 

background error covariance and observed error covariance respectively. R is a 

diagonal matrix with the assumption of uncorrelated observation errors. The operator H 

is the observation operator while matrix H denotes the linearized observation operator.  

The Nucleus for European Modelling of the Ocean (NEMO) is a widely used state-of-

the-art modelling framework developed by the NEMO European Consortium (Madec 

and the NEMO team 2008). The model has the different modelling components (Ocean 

Physics, sea ice, Iceberg, biogeochemistry, and data assimilation) for research studies, 

operational forecasting, and climate applications. The global NEMO model at ORCA025 

tripolar grid has variable grid resolution in latitude with 28 km near the equator reducing 

to 7 km near the North Pole. It also has 75 vertical levels with more vertical levels near 

the surface to better resolve shallow mixed layer especially for capturing diurnal 

variability. The horizontal and tracer diffusion is performed using a biLaplacian operator 

along geopotential levels and Laplacian along isopycnals, respectively. The horizontal 



tracer advection scheme is based on total-variation-diminishing (TVD) scheme. Vertical 

mixing parameterization is parameterized using the turbulent kinetic energy (TKE) 

scheme (Gaspar et al. 1990) with enhanced vertical diffusion using convection 

parameterization. The linear free surface and an energy and enstrophy conserving 

scheme is used. Further, the global seasonal varying climatological river runoff is used. 

The model’s bathymetry is derived from the ETOPO1 & GEBCO data sets. The stand-

alone global NEMO model is used to generate 10 days global ocean model. 

In NCMRWF, the global NEMO based Variational (NEMOVar) assimilation system is 

running at ORCA025 configuration with 75 vertical levels (Waters et al., 2014). It is 

based on the three dimensional variational assimilation with first guess at appropriate 

time (3DVar FGAT). A key feature of NEMOVar is a set of multivariate linearised 

balance relations. Further, it assimilates the satellite and in situ observations of SST, in 

situ observations of temperature and salinity profile, altimeter observation of SLA and 

satellite observations of sea ice concentration through 24 hour assimilation cycle. The 

background information is derived from the model which is forced by the surface 

boundary conditions from the National Centre for Medium Range Weather Forecasting 

(NCMRWF) Unified Model (NCUM; Sumit Kumar et al., 2018) using the CORE bulk 

formulae scheme. These forcing fields include longwave radiation, shortwave radiation, 

precipitation, snowfall rate, 10 m temperature and humidity fields at 3-hr time interval 

and 10 m wind speed at 1-hr time interval. The observations and model first guess are 

used as input to NEMOVar for generating ocean increments which is gradually applied 

to model using 24 hour increment analysis update (IAU) step to create the global ocean 

analysis (figure 1). This analysis is further used to initialize the stand-alone global 



NEMO model to forecast up to 10 days and also

of global atmosphere-ocean model.

assimilation system.  

 

Figure 1:  Assimilation cycle of NEMO based variational assimilation system 
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Table-1: Details of Global Ocean Data Assimilation System 

 Ocean Data Assimilation System 

Model and its 

Resolution 

Nucleus for European Modelling of the Ocean (NEMO);  

¼ horizontal degree and 75 vertical levels 

Domain Global 

Vertical Mixing Turbulent Kinetic Energy (TKE) 

Bathymetry ETOPO1 & GEBCO data sets 

Data Assimilation NEMO based Variational (NEMOVar) assimilation system 

with 40 iterations  

Observations 

Assimilated 

Sea Surface Temperature (Satellite & In situ), Sea level 

anomaly from altimeter, temperature and salinity profiles 

from GTS/ARGO/XBT, Sea Ice Concentration from 

satellite 

Assimilation Cycle 24 hours 

Time Step 20 min 

River runoff  seasonal varying climatological river runoff   

Surface forcing 

and resolution  

NCMRWF unified Model (NCUM) at ~12 km (3 hourly for 

radiation, temperature and humidity, 1 hourly 10 m winds) 

 

2. Impact of Altimeter derived sea level anomaly data assimilation 

on the variational assimilation system 

 Altimeter data provide measurements of dynamic topography over the global 

ocean. This dynamic topography from the altimeter can be directly converted into 



geostrophic currents. The main features of ocean circulation are a series of gyres and 

eddy which have spatial variability across the entire ocean. However, the altimeter data 

is used the sea surface slop information to detect the dynamics of gyres and eddies. 

Further, the long term altimeter data helps to understand the climate changes related to 

sea level rise due to the global warming as well as polar ice melting. The following 

geophysical parameters are estimated with altimeter measurements. 

1. Ocean circulation and sea level variability   

2. Ocean surface wind speed 

3. Significant Wave Height 

4. Deep Sea Bathymetric Features  

5. Land and Sea Ice:  

6. Assimilation of sea level data in Ocean models:   

The assimilation of altimeter data is complex task due to the projection of the surface 

information onto the sub-surface density structure which requires coherent adjustments 

of both temperature and salinity to maintain the Temperature-Salinity (T-S) balance. 

Further, the altimeter data provides the sea level information with respect to the 

reference ellipsoid. However, to assimilate sea surface height (SSH) in a dynamical 

model, we need the sea level information relative to the Earth’s geoid. Here, the geoid   

geoid is the shape that the ocean surface would take under the influence of the gravity 

of Earth, including gravitational attraction and Earth's rotation. Figure 2 shows the 

instantaneous sea surface, mean sea surface height (MSSH), geoid and reference 

ellipsoid. The SSH with respect to geoid is defined as  

     η= <η> + δη …………………………………………………………………………..   (2)  



Where, < η > is the mean dynamic topography (MDT) 

the sea level anomaly measured by the altimeter. However, the 

determined from the altimeter data without knowledge of the 

 

Figure 2: Schamatic diagram of various oceanic parameters such as instantaneous sea 

surface, mean sea surface, ge
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where, MSSH is the mean surface height obtained from 

However, the development of gravity missions such as Gravity Recovery And Climate 

Experiment (GRACE), Challenging Minisatellite Payload (CHAMP), and Gravity field 
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hence provides the information about the mean dynamic topography. Knowledge of the 

geoid has improved greatly, leading to more accurate estimates of the MDT such as 
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provided by the National Aeronautics and Space Administration or by the CLS Space 

Oceanography Division. Various papers related to SSH assimilation in ocean models 

have been published with a focus on regional and global scales (Martin, Hines, and Bell, 

2007; Lea et al., 2008; Ratheesh et al., 2015).  
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